
1 Better Development Tools Are Coming, Will They Be Good Enough?

Better Development Tools Are Coming,
Will They Be Good Enough?

John Clark

Abstract:

It’s  becoming  increasingly  apparent  that  there  is  major  room  for  improvement  in
software development tools. New and improved development environments seem to be
coming out for the Macintosh almost monthly. This paper discusses known techniques
for  making  software  easier  to  develop  and  reviews  the  major  products  coming  to
market. It also reviews and amplifies the reasons we need better tools and the costs of
developing with  poor  quality  tools.  Existing  strategies  offer  partial  solutions  to  the
problem. A proposal is made for an alternative approach that allows for not only known
techniques but also expected future techniques. These can be incorporated into a single
system that does not require starting over from scratch when techniques are added.

I. Why better tools are urgently needed
If  you do software development,  you may have
found  some  serious  shortcomings  in  your
development  tools.  You  may  have  wished  your
development  environment  was faster  or  that  it
worked  better  at  solving  the  problems  you
actually  encounter.  You  may  have  even  seen
situations where the tools get in the way more
than they help.

Ok, it’s pretty obvious that we need better tools,
but why urgently?

The costs of using less than the best
possible tools
The most obvious cost is productivity. Here the
cost shows up in extra personnel needed to do
the job. But this cost is higher than one might
first expect. It’s well know that doubling the staff
does not cut the development time in half.  You
need  something  more  than  twice  the  people
because bigger groups need more time to stay
coordinated  and  because  there  are  more
problems in communicating.

But  reduced  productivity  is  not  the  only  cost,
maybe not even the most serious cost. Poor tools
increase  the  number  of  product  quality
problems. Why? Partially because it takes longer

to  find  and  fix  problems  with  available  tools
(which schedules don't always accommodate). It
also happens because some problems are nearly
impossible to find without the right tools.

Innovation  also  suffers.  It’s  much  easier  for
people  to  be creative when they  can try  ideas
quickly and painlessly and they don’t have to try
to justify large resources to developing new and
yet  unproved  ideas.  Poor  tools  don’t  prevent
innovation but they raise artificial barriers to it
and make it much harder to achieve.

Another  high  cost  of  poor  tools  is  that  it  can
seriously  impede  your  organization’s  ability  to
achieve its goals. If you use them to develop your
products, it limits the scope of your products and
increases development time. Your product plans
may not be realized or may be realized at less
than their full potential. If you rely on computers
to  manage and run your  business,  it  makes  it
much more difficult  to get the information you
need and the kind of tools your people need to
run your organization.

For  the  development  team,  using  poor  tools
muddles  the  thought  process,  rather  than
helping  it.  It  forces  them  to  concentrate  on
dealing with details of the tools rather than the
real problem.

Better Development Tools Are Coming, Will They Be Good Enough? 1



2 Better Development Tools Are Coming, Will They Be Good Enough?

How  much  improvement  can  really
be made?
That's a very good question. I’ve been unable to
find reliable estimates of  even the productivity
side of the costs. Plus it depends on how much
improvement  can  be  made  in  tools  and  how
much  of  your  particular  project  is  actually
affected by the tools.

Better Development Tools Are Coming, Will They Be Good Enough? 2



3 Better Development Tools Are Coming, Will They Be Good Enough?

In any case, it’s not too hard to justify that a two-
to-one improvement is possible. 

That is, better tools could cut the time and cost
of development in half.  In many situations, and
with the right tools, it could be as high as ten to
one. Meaning it costs ten times too much right
now.

And we haven’t even considered the other costs.

Why  hasn’t  more  progress  been
made?
If these figures are even remotely correct, why
hasn’t more been done about it?

For  one  thing,  I  don’t  think  many  people
understand  the  magnitude  of  the  problem.  It
seems  inconceivable  that  we  may  be  wasting
over  half  of  our  time  and  money  due  to
inadequate  tools.  Inconceivable  being  the
operative  word.  We just  don’t  picture  how big
this problem is. Since the kind of tools we need
aren’t available yet, we can’t exactly “A/B” test
them against what we have now.

We tend to live with the tools we have. After all,
most  of  us  were  hired  to  develop  a  specific
product, not to do tool development. We live with
relatively  short  term deadlines  and  don’t  have
time or  money to  make better  tools  ourselves.
Strangely  enough,  I  think this is  true even for
most tools developers.

It’s easy to think that we already have tools to do
development with, why do we need better ones?
Why should we waste time getting better ones?
Why can’t we just use the ones we have now?

We assume someone else will do it. Somewhere
an entrepreneur, academic type or big company
will come up with “the answer.” Or we just have
to wait for better tools to evolve. Either way, we
feel it’s someone else’s job.

One of the reasons I’ve heard given is that there
isn’t enough money to be made in development
tools. The market is too small. This is especially
disturbing  since  I’ve  mainly  heard  it  from
programming tools developers.

The “one-track mind” problem
New  tools  usually  come  about  when  someone
gets frustrated with the limitations of their old
tools. They come up with a better way and get
inspired  to  go  to  a  considerable  amount  of
trouble to create a new tool. 

So what’s wrong with that? The problem is that,
with  all  the  energy  focused  on the  new ideas,
they  tend  to  stop  looking  for  other  ideas  that
could also help. 

This wouldn’t be so bad except that there usually
isn’t a good way to incorporate other ideas later.
Even the most open systems, such as MCL1 and
Smalltalk, are easy to modify in some ways, but
very difficult to modify in others.

Today, the big thing that many people narrowly
focus on is object-oriented programming (OOP).
But OOP alone is not enough. As an example, if
you have painfully slow OOP, then you still have
painfully slow programming.

The largest example of this narrow focus may be
Taligent,  the  joint  venture  between  Apple  and
IBM.  Taligent  has  devoted  huge  amounts  of
resources  on  a  project  which  has  a  single
predominant theme, being object-oriented. I use
the  word  "may"  because  there  may  be  hope.
Taligent does make references to addressing the
broad  problem  of  easing  the  programming
process. Having an open system also seems to be
high on their priorities.

Are  significantly  better  tools  really
possible?
Yes!  In  the  next  section  I  list  a  number  of
techniques for making development easier. All of
these  have  either  already  been  implemented
somewhere  or  are  not  technically  difficult.  So
there is little reason to doubt that it can be done.

1MCL-Macintosh Common Lisp

Better Development Tools Are Coming, Will They Be Good Enough? 3



4 Better Development Tools Are Coming, Will They Be Good Enough?

II.  Techniques  for  making
software easier to develop
A.  Turnaround  time  or
responsiveness2

Responsiveness should not be thought of as just
a “nice” thing to have. Not merely luxury you can
afford only if  you get it for very little effort.  If
turnaround is slow, the feeling of feedback the
user  (programmer)  gets  is  greatly  diminished.
Instead  of  a  tool  that  seems  like  it  does  your
bidding, it becomes a process you set in motion
that responds in its own time.

2Although this is a programmer interface issue, it is so important that it should be treated separately.

Better Development Tools Are Coming, Will They Be Good Enough? 4



5 Better Development Tools Are Coming, Will They Be Good Enough?

With more significant delays, the user naturally
starts thinking of other things. When he finally
gets  a  response,  he  has  to  put  away  his  new
thoughts  and try  to  recall  where he  was.  This
becomes  the  human  interrupt  mode.
Unfortunately, humans do not handle interrupts
nearly as well as computers. Interruptions cause
both a significant lag time in recovering from the
interruption  and  a  considerable  decrease  in
productivity under interrupt conditions. 

I’ve  classified  responsiveness  into  four
categories.  These are purely  empirical  and the
times  mentioned  were  picked  from  my  “gut
feeling.” No doubt someone has studied this in
detail  and  can give  better  values  for  the  time
ranges.  I  have  not  yet  had  time  to  look  for
studies on this.

Levels:
•A. Immediate - less than roughly 200 ms (0.2
seconds)
It  feels  like  your  action  directly  produces  the
result.  The  user  feels  his  action  is  directly
connected to the result.

•B. Sluggish - roughly 200 ms to 2 seconds
While  you can still  connect  your  action  to  the
results, the system feels sluggish, as if you only
partially have control of it.

•C. Delayed - roughly 2 seconds to 20 seconds
You’re  no  longer  sure  you  are  really  under
control.  Eventually you learn that you do have
control,  but  initially  you  have  to  take  it
somewhat on faith.
Imagine  driving  a  car  that  starts  turning  5
seconds  after  you  move  the  wheel.  Would  you
drive such a car? You certainly couldn’t drive it
very fast.

•D. Interruption mode - roughly greater than 20
seconds
While  waiting,  you  start  to  think  about  other
things.  Getting  back  to  what  you  were  doing
takes the effort I described above.

These levels are easy to verify. Compare opening
a small application that opens quickly to one that
takes several seconds to open. Doesn’t it feel like
you  have  more  control  with  the  small
application? Compare even the small application
to  switching  to  another  application  under
MultiFinder. This time your action really seems
connected to the result.

Why  are  the  differences  listed  under  the
“Interrupted” mode significant? I can’t prove it,
but I think it affects the speed of learning. You
tend  to  learn  to  use  the  quickly  responding
actions in less time than the delayed ones. There
is also much more of a sense of enjoyment when
the  computer  does  what  you  ask  nearly
immediately.  Delay  makes  you  feel  frustrated,
impatient with the stupid machine.

Development  systems (and applications)  should
strive  to  meet  “Immediate”  (A)  levels  of
responsiveness.  Is  it  unreasonable  to  expect
response in less than 200 milliseconds? Consider
this. Even a moderate speed 68030 should easily
execute  over  100,000  instructions  in  200
milliseconds.  Unless  we have  huge amounts  of
data to process (such as pictures) or we HAVE to
wait for disk I/O, an incredible amount of work
can be done in 100,000 instructions.  So, I feel
that  a  goal  to  having  all  but  disk  intensive
operations  occur  in  less  than  200  ms  is
attainable.  Even  the  disk  I/O  problem  can  be
sped up greatly if done properly.

B. Programmer interface issues
1.  Text  based  vs.  graphic  and  other
representations
We are still, for the most part, using text based
programming. The obvious problem with it being
text based is that it requires typing. Typing is not
only a lot of work but it’s easy to make errors
while doing it.

We  make  identifiers3 long  so  they  can  be
meaningful, which means both lots of typing and
lots of chances to make mistakes.

There are other ways of representing code. One
3Identifiers are how programs locate either specific pieces of information or other parts of the program.

Better Development Tools Are Coming, Will They Be Good Enough? 5



6 Better Development Tools Are Coming, Will They Be Good Enough?

is to use diagrams. In tools such as Prograph and
Serius,  coding is  done  by  drawing connections
between  objects.  These  objects  represent
program  or  data  elements  and  the  lines  that
connect them represent program or data flow.

Another  alternative  is  to  treat  the  code  as  an
outline.  You can then hide details  that  are not
currently  relevant,  which  are  represented  by
lower levels of the outline structure. While you
still end up with a 

Better Development Tools Are Coming, Will They Be Good Enough? 6



7 Better Development Tools Are Coming, Will They Be Good Enough?

text based system, you at least get some control
over the amount of complexity you are presented
with.

If these alternative representations are used as
other ways of looking at the same information,
you have a new type of  tool.  Essentially,  these
are multiple views into the same program. For
example,  you  could  use  a  class  hierarchy
diagram to help understand the relationships of
your classes.

2. Coding should be a last resort
One  good  way  for  improving  programming
productivity  is  to  only  program  (code)  when
absolutely  necessary.  It’s  much  more  time
consuming to write code for things that can be
drawn or otherwise designed directly. For this to
work well it must be done is such a way that it
meshes cleanly with the code. You can’t afford to
redo the coding whenever you change the non-
code parts.

3. Integrated CASE4 tools
Today's CASE tools work by reading source code
and determining  the  same things  the  compiler
already  does.  If  the  development  environment
made this information available to outside tools
then CASE tools vendors would not have to re-
invent this part of the world.

With the right kind of development environment
the CASE tools could work both ways: analyzing
the  code  to  make  it  clearer,  and  allowing  the
programmer  to  produce  changes  from  that
perspective.

4. Object-oriented programming5(OOP)
Object-oriented programming is one of the best
tools we currently have for getting some control
over  the  complexity  of  today's  development
environments. (Please remember that it is NOT
the only one.)

Also, though we tend to think of it as a means of
programming, it is also a way of organizing our
thinking and structuring our ideas.

Simplifying  the  development  process  and  code
reuse  are  frequently  touted  as  being  the  big
virtues of OOP. From what I've seen, with OOP
you gain by having somewhat simpler code, but
you  have  to  pay  the  price  of  learning  a
substantial amount of someone else's code, the
class library that you are using. As far as code
reuse,  studies  have  shown  that  in  practice  it
doesn't really occur.

But there are other benefits to OOP. It allows the
building  of  frameworks,  which  can  provide  a
great  deal  of  built  in  functionality  with  a
minimum  price  to  the  user  of  the  framework.
This allows you to build on existing, tested code.

OOP  also  makes  it  much  easier  to  write
generalized code, that works for a wide range of
data types (objects).

It's very useful having default behaviors that can
be overridden when necessary.

OOP is  a  controlled,  disciplined  method  to  let
similar  situations  take  advantage  of  whatever
common code they can.

You  may  not  have  thought  of  object-oriented
programming as a “mere” human interface issue.
But  what  else  does  OOP  do  but  help  the
developer do his job?

There  is  some  controversy  about  which  is  the
best technique to do code sharing. What is clear
is that we have a lot yet to learn in this area. It
will take a few years for us to figure out the best
way to do this.

5. Structured programming
Although  this  is  not  a  new  technique,  it  does
belong  under  the  "programmer  interface"
section.  It's  also  worth  mentioning  since  there
are a few programmers who still don't use it.

6. Version control
Keeping  track  of  revisions  within  the
development environment is still a relatively new
and  rare  idea.  It's  very  hard  to  do  well
elsewhere.

4CASE stands for Compute Aided Software Engineering.
5Object-oriented programming is too involved to be explained here. I am assuming that most readers are familiar with the term. 

Better Development Tools Are Coming, Will They Be Good Enough? 7



8 Better Development Tools Are Coming, Will They Be Good Enough?

Having ready access to changes that were made
is very helpful in understanding where problems
came from and in verifying that they are really
fixed.  They  are  also  useful  to  have  on  those
occasions  when you need to  recreate  an older
version of the software.

This would work very well  with the concept of
retaining  testing  information  within  the
development environment mentioned in the next
section.

"Source code" management also falls under this
category and is important in keeping multi-

Better Development Tools Are Coming, Will They Be Good Enough? 8



9 Better Development Tools Are Coming, Will They Be Good Enough?

programmer projects  from getting fouled up.  I
put the phrase "source code" in quotes because
you still  need this even if parts of your system
aren't represented as code.

7. Data flow programming
This  is  another  non-traditional  way of  building
and looking at code. It's a good way to develop
some kinds of software and it may be useful as
another way to look at existing code.

8. Other aids to the programmer
a. Identifier location

Having  the  development  environment  able  to
immediately find who references who and to use
this  to  navigate  through  your  code  is  a  very
useful feature.

b. Aids to text input

If you've ever made a typo on a long variable or
routine  name,  you  know  that  it  would  help  a
great deal to be able to look up or navigate to
get the right name. Some of us don't even spell
that well!

c. On-line documentation

In addition  to  which  routine  to  call  with  what
arguments,  you need to know something about
what it does. You may also need documentation
to  figure  out  what  routine  to  call  in  the  first
place.

Summary  of  programmer  interface
issues
Today's  development  environments  have
overwhelming amounts of information associated
with them, especially as projects get large. We
need  all  the  help  we  can  get  in  locating,
understanding and sometimes hiding the details
of today's systems. The right place to do this is
within the development environment itself.

C. Testing, proving and debugging
1. Integrated testing
Debugging  is  a  terrible  name  for  what  we
actually do. We try to test code to either prove

that  it  works  or  to  find  where  it  doesn't.
Sometimes finding what actually caused an error
is difficult and time consuming. It may not even
be in our code.

We should be using debugging mainly in testing
our software to see that it works correctly.

Our  development  environment  could  be  a  big
help  in  this  process.  There's  no  reason why it
can't  keep track  of  what’s  been tested,  how it
was  tested  and  when.  You  also  need  to  know
whether anything has been changed since it was
tested. Who knows, it may even be a good idea to
specify the tests and the expected results along
with the code in the development environment.

2. Super debugging tools
Debugging tools vary widely in quality. For any
particular problem they either seem to work well
or are barely useful at all.

The debugger should be source level. This does
not mean just being able to step through lines of
source code. You need to have the same level of
access  that  you  do  in  the  writing  process,
including  changing  code  while  you're  in  the
middle of debugging.

You need to be able to do cross-referencing, code
editing and even the ability to write small pieces
of code to aid in debugging. You should be able
to flag this code as being part of this particular
debugging  operation  and retain  it  in  case  you
have a similar problem in the future. Traditional
tools  let  you  attempt  this  with  conditional
compilation. But it tends to make a mess of your
source and you can't do it "on the fly." You have
to  stop  everything  and  go  through  the  edit,
compile, link and debug stages.

D. Emerging techniques
Sometimes the hardest part of programming is
coming  up  with  a  good  algorithm  or  way  of
solving your problem. In some cases “trainable”
systems avoid the problem of having to design a
clever way to solve the problem, which may not
even be possible. We’re even starting a to some
hope that the computer can be used to design
the algorithm itself. Either way help been given
to  what’s  sometimes  a  very  knotty  part  of  the

Better Development Tools Are Coming, Will They Be Good Enough? 9



10 Better Development Tools Are Coming, Will They Be Good Enough?

problem.

1. "Trainable" systems
There  are  several  technologies  for  making
systems  "trainable."  These  include  neural
networks, genetic algorithms and other artificial
intelligence methods. This type of software saves
the programmer from having to find or invent an
algorithm that works for 

Better Development Tools Are Coming, Will They Be Good Enough? 10



11 Better Development Tools Are Coming, Will They Be Good Enough?

these problems. Instead, by repeated trials the
program learns which responses work best.

While this does not help the programmer write
programs, it does save him from having to do a
part of the job that can be very time consuming.

2. Genetically developed algorithms
A  limited  amount  of  work  has  been  done  in
applying genetic algorithms to actually "evolve"
some kinds of algorithms. The results have been
surprisingly  good  and  also  very  different  from
programmer  designed  algorithms.  The  biggest
difference is that these algorithms are much less
fragile than the ones people design.

This  field  has  huge  potential  and  some
interesting ramifications. Can our egos stand it if
machines can come up with better solutions than
we can? There is the potential for programming
to be done by specifying the results we want and
letting the machine give us the best solution it
can find.6

3. Beyond
Computers are amazingly flexible machines. The
main limitation we face in finding better tools is
not due to the computer. It's literally the limits of
our imagination. This sounds like a phrase from
a  science  fiction  book  but  let's  look  at  the
problem.

With some very, very rare exceptions, all of our
ideas about how to work with computers come
from our previous experience with existing tools.
All  of  our  conceptions  about  what  can,  cannot
and should be done come from this experience.
We occasionally manage to break off on a short
tangent  when  we  are  faced  with  an  unusual
problem. But for the most part we have a very
hard  time  picturing  concepts  that  are
significantly outside of our experience. Once we
get past our present set of limitations we'll find
new ones. These will require new and different
types of solutions.

III. What needs to be done?
There are limited things most  of  us  can do to

help solve this problem. 

We  must  recognize  the  problem  and  the
magnitude of its effects.

Programmers need to make management aware
that this is a pivotal technology that multiplies
the cost of all software development and limits
our ability to develop, ship and sell products.

We should recognize that this IS NOT someone
else’s problem. 

If  you  do  software  development,  you currently
waste most  of  you time waiting for or fighting
your  tools.  Life  will  be  much  more  fun  with
better tools. 

If  you  are  in  management  there  are  serious
wastes  of  resources  and  missed  business
opportunities  due  to  this  problem.  Better  tools
will  mean  more  opportunities  that  can  be
pursued with the same limited resources.

Let's  see what  we can figure out.  We all  have
ideas  about  how to  make our  job  easier.  Let's
share them and look for tools that will actually
let us improve them.

A proposal
A platform is needed so that better development
environments  can  evolve.  Currently,  whenever
someone  wants  a  better  development
environment, a whole new development world is
created. 

What should it be like? It should be independent
of  the  programming  language  used  and  even
able  to  express  the  same program in different
languages. It  should also support non-language
views of code, such as graphical representations.
It  should  definitely  support  object-oriented
programming.

It also must be as open as possible to adding new
development technologies later. We can’t foresee
future development technologies but we can help
make them easy to implement. We don’t want to
lock out future advances if we can possibly help
it.

6See Artificial Life by Steve Levy (Pantheon Books, 1992), pp195-204.

Better Development Tools Are Coming, Will They Be Good Enough? 11



12 Better Development Tools Are Coming, Will They Be Good Enough?

It  needs  to  have  symbol  and  structure  level
information readily accessible. This would make
it  much  easier  to  do  CASE tools,  prototyping,
visual/graphical programming, browsers, & who
knows what else.

Better Development Tools Are Coming, Will They Be Good Enough? 12



13 Better Development Tools Are Coming, Will They Be Good Enough?

IV. Improved tools: Here now and
on the horizon
Currently shipping tools
MCL (Macintosh Common Lisp)

Pluses
It's been shipping for several years.
Users report getting extremely good support.
It  uses  CLOS7 to  support  object-oriented
programming.  CLOS  is  a  very  powerful  and
flexible when compared to C++.

Minuses
MCL is somewhat slow compared to C or C++
code.

It looks hard to learn to most programmers. (The
things  that  scare  most  programmers,  the
language syntax and the parentheses, are not big
problems.)

Common Lisp is a BIG language. There is a lot to
learn if you want to know it well. (However, you
need  to  know only  a  small  subset  to  do  most
programming.  Most  Lisp  programmers  don't
seem to know every last detail about it.)

It  does  not  include  an  application  framework.
However there are several tools that make doing
many standard Mac things very easy.

Minimum application size is large. Currently you
have to take the whole development environment
with  you  when  you  build  a  stand  alone
application.8

Improvements  to  MCL  come  out  slowly.  MCL
should be considered a very stable and mature
development system.

The  Common  Lisp  code  should  work  cross
platform fine but Mac specifics won't. It does not
support cross-platform applications. 

Component Workshop

Pluses
It's been shipping since late last year, 1992.
It includes their own application framework.
It  was  designed  from  the  ground  up  to  be
crossplatform.
Both the product and the framework seem to be
improving fairly rapidly.
The minimum application size is around 300k.
It does not need make or header files.
Minuses
It is open to tools being built on it but with the
same  king  of  restrictions  you  would  find  with
MCL or Smalltalk.
When  you  are  ready  to  build  a  shippable
application  you  must  use  the  "Extruder"  to
produce standard MPW C code. This process is
slow  and  potentially  introduces  problems  that
are new to the code you developed inside their
environment. This is not the ideal way of doing
things.
Component  Workshop  uses  a  custom  (non-
standard)  subset  of  C++.  They  are  working
toward a more complete implementation but may
be partially restricted because of the improved
feature they support.
Component  Workshop  is  currently  limited  to
using  their  own  framework.  While  they  talk
about possibly working with outside frameworks
such as Bedrock, only time will tell whether and
to what extent this is possible.
Comments:
While their non-standard use of C++ has some
restrictions  they  also  simplify  some  of  the
messier  parts  of  C++.  For  example  they  have
made  multiple  inheritance  much  easier  and
coherent to work with.
Symantec C++ 
This  product  was  just  announced  at  Apple’s
World Wide Developers  Conference.  Since  that
was just before my final deadline I have not been
able to take a very close look at it.

7CLOS-Common Lisp Object System
8They are working on this problem but it's a very difficult on to solve.

Better Development Tools Are Coming, Will They Be Good Enough? 13



14 Better Development Tools Are Coming, Will They Be Good Enough?

Assuming it’s  like other Think environments,  it
will  have  a  better  interface  and  much  better
turnaround than MPW C++. What we can expect
is good but not astounding turnaround times and
a debugger with a good interface and moderate
capabilities. I don’t expect any major new ideas
or it to have easy ways for it to be extended.

Better Development Tools Are Coming, Will They Be Good Enough? 14



15 Better Development Tools Are Coming, Will They Be Good Enough?

Expected future tools
None of these products are yet shipping and the
information on them is mostly preliminary, and in
some cases is only based on rumors and logical
assumptions.

“Pink”-Taligent’s operating system
Taligent is the Apple/IBM joint venture that was
formed  to  finish  "Pink,"  the  object-oriented
operating system that Apple started.

Taligent is not talking much publicly about the
details. From what little they have said, this may
represent  a  major  step  in  the  right  direction.
They are focusing very heavily on being object-
oriented. But if you listen carefully, they seem to
recognize that there is more to the problem than
just that. I just hope they are not blind by their
faith in OOP or that the size of the project dooms
it to non-creative solutions.

Stay tuned for more. Let's hope it's as great as
they want us to think it will be.

Dylan
Dylan  is  a  product,  well  maybe  concept  is  a
better  word,  of  Apple's  east  coast  Advanced
Technology Group. They are shipping a manual
(no  official  software  yet)  for  what  they  are
hoping will become a new standard development
language.  Initially,  it  had  a  Lisp-like  syntax
(actually  Scheme,  a  Lisp  style  language).  Non-
Lisp  programmers  were  apparently  totally
turned off and they are now working on a more
traditional  syntax  for  it.  A  new  version  of  the
manual will be available when this is done.

The  intention  seems  to  be  to  come  up  with  a
dynamic  environment  that  is  still  efficient
enough  to  use  for  a  wide  variety  of  tasks.
Apparently,  one  of  its  major  uses  is  for  the
Newton,  Apple's  announced,  but  not  yet
shipping, "Personal Digital Assistant."

Although details on the language are available,
there  are  too  few  details  on  the  development
environment  to  make  many  intelligent
comments.  However,  it's  good  to  see  Apple

working  on  dynamic  development  tools.
Personally,  I  think  there  may  have  been
advantages  to  the  flexibility  of  the  Lisp-style
syntax and I hope it is still available to those who
want to use it.

MPW++ 9

(The MPW replacement)

Apple  has  discussed  its  plans  for  a  new
development  system  to  replace  MPW.  No
schedule  has  been  announced.  The  system  is
planned  to  be  a  modular,  interactive  dynamic.
Tradeoffs  include  probably  losing  some  of  the
spriptability of MPW. In its place we can expect
a  much  better  interface.  Some  new  compiler
technologies are being evaluated, but who knows
what this means.

The bottom line is that this is mainly a big, but
interesting,  unknown.  For  it  to  make  sense,  I
expect  we’ll  see  something  in  around  a  year.
Openness  to  third  party  tools  is  an  important
feature. Depending on how well they implement
it, this may be its most significant feature.

SK8
SK8  (pronounced  skate)  was  shown  at
MADACON earlier this year. It was presented as
being an authoring tool and was very impressive.

While it was not presented as a general purpose
programming tool, it is an excellent example of
what other tools can be like. We don’t yet know
to  what  extent  it  may  be  useful  in  general
purpose programming.

In any case Apple has given no clues as to when
it will be available, which probably means that it
is at least a year away.

V. Well, will they be good enough?
Maybe  I  should  try  to  answer  the  question  I
posed  in  the  title.  In  one  sense,  I  don't  have
enough  information.  Most  of  the  products  in

9This is a name I made up to make it easier to talk about. As far as I know no one else calls it this.

Better Development Tools Are Coming, Will They Be Good Enough? 15



16 Better Development Tools Are Coming, Will They Be Good Enough?

question  are  still  vaporware  (or  in  even  just
rumors and assumptions).  At  this  stage,  you're
doing well to get any answers from vendors and
what  you do get  are mainly  stories  about  how
great the tool will be when it finally ships. Until
the restrictions and limitations of these products
are  known,  we  can  only  make  good  guesses
about what they will really be like.

If  I  sound as  if  I'm avoiding  the  question,  I'm
sorry. There are still some answers. In fact there
are two: 

Better Development Tools Are Coming, Will They Be Good Enough? 16



17 Better Development Tools Are Coming, Will They Be Good Enough?

"probably yes" and "definitely no." I'm not being
a smart aleck. These are two legitimate sides of
the question.

"Probably yes":
With the number of new tools in the wings there
will  certainly  be  at  least  some  significant
improvement  in  the  quality  of  tools  available.
Component  Workshop,  for  example,  does make
major improvements in the C++, object-oriented
development  environment.  The  turnaround  is
much faster and it has a number of tools to help
you navigate through the code.

"Definitely no":
On  the  other  hand,  the  process  of  refining
development  tools  will  never  be  done.  Assume
we suddenly had all the features that we know
about in our development tools. It would seem as
if the fog had been cleared away. We would soon
start noticing layers of problems that we'd never
been able  to notice before.  Hopefully,  our new
tools  would  let  us  easily  start  building  even
newer tools to deal with the problems that had
been obscured before.

Summary:
For our industry, this is a very serious and under-
recognized problem. It makes our projects more
expensive, take more time than they should and
keeps  us  from  accomplishing  as  much  as  we
should.  Fortunately,  we  are  finally  starting  to
recognize the problem and do something about
it.

We still  must recognize that we don’t know all
the answers. We need to keep our development
environments as open as possible so that we can
incorporate as many upcoming new concepts as
possible into them.

The  tools  I've  seen  and  heard  about  improve
turnaround  but  still  have  delays  that  can
sometimes get up to from tens of seconds to a
minute  or  so.  This  is  an  improvement  but  not
nearly as good as can be done.

The other part of the problem that begs for more
attention  is  the  need  to  reduce  the  apparent
complexity to the programmer. We can definitely
use  more  tools  that  assist  us  in  dealing  with
specific details as we are doing development.

Better Development Tools Are Coming, Will They Be Good Enough? 17


